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RESUMEN: La comprensión precisa de los factores de riesgo de las diferentes instituciones de depósito es la clave para su operación 

sostenible. En este documento, analizamos dos enfoques estocásticos para modelar activos sin fechas de maduración (NMA) 

empleando un proceso Ornstein-Uhlenbeck que puede usarse para la evaluación del riesgo de liquidez e interés de las cuentas de 

depósitos a la vista en los bancos. Detallamos las especificaciones, los parámetros y los resultados de la simulación de los modelos. 

Además, examinamos los patrones regulares, a lo largo del año, del comportamiento del volumen de depósitos en cuentas de depósitos 

a la vista en Colombia, en concordancia con los resultados de otros investigadores en diferentes países. Finalmente, encontramos que 

se debe incorporar un término de tendencia en el modelo para capturar el crecimiento de la serie. 

Palabras clave: Depósitos a la vista, Gestión del riesgo de liquidez, proceso Ornstein–Uhlenbeck. 

 

ABSTRACT: The accurate comprehension of the risk drivers of different depository institutions is the key to their sustainable 

operation. In this paper, we analyze two stochastic approaches to model Non-Maturing Assets (NMAs) employing an Ornstein–

Uhlenbeck process that can be used for the evaluation of the liquidity and interest risk of savings accounts in banks. We detail the 

models’ specifications, parameters, and simulation results. Furthermore, we examine the regular patterns, throughout the year, of the 

behavior of the volume of deposits into saving accounts in Colombia, in line with the results of other researchers in different countries. 

Finally, we found that a trend term should be incorporated into the model to capture the growth of the series. 

Keywords: Demand deposits, Liquidity risk management, Ornstein–Uhlenbeck process.  
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1. Introduction 

Banks borrow and lend money from and to multiple agents with different purposes and investment 

intentions, using a variety of products and implicit interest rates. Such institutions seek to maintain a 

positive spread of the assets they invest in and the cost of their funds (Kalkbrener & Willing, 2004). This 

is because their funds can be withdrawn by customers at any time as their products have no specific 

contractual maturity, as described by Entrop et al. (2009), which implies that banks regularly invest in assets 

with different levels of liquidity by transforming liquid deposits into long-term assets. 

During the 2007–2009 financial crisis, banks seriously compromised their liquidity. Throughout the 

early liquidity phase, many banks, while maintaining adequate levels of capital, ran into difficulties by not 

managing their liquidity prudently (Basel, 2011). According to (Cornett et al., 2011), such crisis offered a 

unique challenge to financial institutions and regulators to improve their liquidity risk management; 

furthermore, it brought along significant fiscal and monetary responses by the US government that 

produced the risk of inflation (Nawalkha & Soto, 2009).  

As described by Cornett et al. (2011), liquidity is the cornerstone of financial intermediation: banks 

need liquidity to supply credit demands and withdrawals from depositors. Liquidity depends on 

information, as explained by Goodhart (2008): under the assumption of market completeness where the 

information of a complete set of contingent securities is available to all agents participating in this market, 

liquidity problems are not generated, since the assets can be traded at their fundamental value. Vento and 

La Ganga (2009) define liquidity risk as the risk that a financial intermediary does not have sufficient liquid 

resources to meet its obligations or must obtain such liquidity at excessive costs 

The Basel Committee on Banking Supervision (BCBS, 2013) promotes the short-term resilience of the 

liquidity risk profile of banks to survive a significant stress scenario. The Committee aim to ensure that the 

bank has adequate cash, or equivalent assets, to meet its liquidity needs for a 30-calendar day. This implies 

the use of an adequate tool to measure such liquidity needs and give some clues on how to define a policy 

regarding a minimum liquidity level. In this framework, the main goal of risk analysts is to estimate cash 

flows of future periods and identify the maximum possible variations to appropriately capture indicators 

such as Cash Flow at Risk (Волошин and Микита, 2020). Measuring liquidity involves the estimation of 

future cash flows for all assets and liabilities, such as interest payments, deposit into saving accounts, and 

bonds, among other assets (Feilitzen, 2011). 

In this paper, we study a way to represent the dynamics of saving accounts, which can be considered 

Non-Maturing Assets (NMAs), adopting a stochastic approach. The principal issue of this kind of assets is 

the embedded option that clients may exercise at any moment and the unhedged volume risk (Frauendorfer 

& Schürle, 2007). Fortunately, the data available for this kind of analysis is enough to present statically 

significance. The stochastic modeling approach for NMAs has been studied by Jarrow and van Deventer 

(1998), Kalkbrener and Willing (2004), Dewachter et al. (2006), Frauendorfer and Schürle (2007), Nyström 

(2008), Cipu and Udriste (2009), Paraschiv and Schürle (2010), Musakwa (2013), Blöchlinger (2015), 

Džmuráňová and Teplý (2015), Henningsson and Skoglund (2016),  Grundke and Kühn (2020), Волошин 

and Микита (2020); most of them, based on Vasicek (1977). 

In this work, we analyze two stochastic models of NMAs1 that can be used for the evaluation of liquidity 

and interest risk of savings accounts in Colombian banks. We also study the convenience of employing an 

Ornstein–Uhlenbeck process to describe the dynamics of NMAs in Colombia in terms of volume of deposits 

and the logarithm of such volume2. Modeled as a mean-reverting process, the deposit volume always returns 

to some equilibrium level: the stronger the mean reversion, the faster the deposits will go from an extreme 

value to their equilibrium (the expected mean). Moreover, its long-term variance converges to a constant 

and does not increase indefinitely; thus, deposit volume maintains its movements within some range nearby 

its long-term mean. 

The paper is structured as follows. Section 2 presents a description of the characteristics and dynamics 

of deposit volume. Section 3 introduces the mathematical model that represents the stochastic behavior of 

                                                 
 
2 The logarithmic transformation allows the smoothing of the series’ volatility. 
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deposit volume, while Section 4 examines data of Colombian saving accounts. Section 5 focuses on process 

estimation and simulation. Finally, Section 6 offers some concluding remarks about the results we found 

and recommendations for future studies. 

2. Deposit volume 

The volume each client deposits into a bank account is seen as an amount of money that has been lent to 

the bank. Such accounts are deemed Non-Maturing Assets, as depositors are free to, at any time, deposit or 

withdraw capital from their deposit account. Therefore, they do not have a predetermined maturity date, a 

source of uncertainty for future cash flows (Henningsson & Skoglund, 2016).  Rational decision-making 

by customers is reflected in the behavior of non-maturity deposits and depends on 2 factors: the value 

received and the value perceived. The volume of an NMA position moves as clients react to interest rates; 

for example, when interest rates are low, clients choose fixed-rate loans. 

Deposit volume modeling must consider some characteristics, such as those described by Frauendorfer 

and Schürle (2007) for NMAs. The driver of deposit volume is customers’ economic behavior, that is, when 

an investment option appears, the demand for deposits into saving accounts tends to decrease. When interest 

rates are low, clients try to anticipate their investment decisions, and when such rates are high, they 

postpone said decisions. Unfortunately, the embedded prepayment and withdrawal options of NMAs 

represent a volume risk. 

Jarrow and van Deventer (1997) explain demand as a process with no arbitrage opportunities for 

individuals. They demonstrate that the Net Present Value of demand deposits into a bank can be calculated 

by Equation (1), where D_t represents the volume of demand deposits; i(t), the net servicing cost; B(t), the 

value of the money market account; and E(⋅), the expected conditional value at t=0. 

 

𝑉𝐷(0) = 𝐷0 + 𝐸 (∑
𝐷𝑡+1 − 𝐷𝑡

𝐵(𝑡 − 1)

𝜏−2

𝑡=0

) − 𝐸 (
𝐷𝜏−1 

𝐵(𝜏)
) − 𝐸 (∑

𝑖(𝑡) ⋅ 𝐷𝑡

𝐵(𝑡 − 1)

𝜏−1

𝑡=0

) (1) 

 

This expression assumes, and that is an important finding or our research, that the aggregate demand 

deposits depend only on the evolution of the term structure of default-free rates. Therefore, the relationships 

between deposit volumes and interest rates should be investigated to establish whether rate changes impact 

customer behavior. In turn, Jarrow and van Deventer (1997) represent deposit volume as a linear function 

of market interest rate, 𝑟𝑡: 𝐷𝑡 = 𝛽0 + 𝛽1 ⋅ 𝑟𝑡, where 𝛽0 and 𝛽1 are constants. A similar conclusion was 

reached by Paraschiv and Schürle (2010) when they found that the series of deposit rates and market rates 

are cointegrated.  

Furthermore, the long- and short-term randomness of deposit volumes must, hence, inherit the dynamics 

of short-term interest rates. Considering Vasicek’s model as an appropriate way to describe the stochastic 

structure of interest rates, a mean-reverting stochastic process must be established to represent deposit 

volume. This is coherent with the modeling proposed by Kalkbrener and Willing (2004) and the findings 

of Paraschiv and Schürle (2010): the speed of the adjustment back to equilibrium grows with the increase 

in the magnitude of client rate’s disequilibrium. 

3. Mathematical model 

3.1. Volume 

The first model we use in this study is proposed by Kalkbrener and Willing (2004). They assume a normal 

distribution of volume increments and model the volume process 𝑉(𝑡), for all 𝑡 ∈ [0, ∞), as the sum of a 

deterministic linear function 𝑓𝑉(𝑡) and an Ornstein–Uhlenbeck process whit zero mean 𝑋𝑡, as shown in (2). 
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We assumed that, for the initial time 𝑡 = 0, the deposit volume and the Ornstein–Uhlenbeck process had a 

known value: 𝑉(0) = 𝑉0 and 𝑋𝑡=0 = 𝑥0,, respectively. 

𝑉(𝑡) = 𝑓𝑉(𝑡) + 𝑋𝑡  

𝑑𝑋𝑡 = −𝜅𝑉𝑋𝑡 ⋅ 𝑑𝑡 + 𝜎𝑉 ⋅ 𝑑𝑊𝑡 (2) 

 

where 𝑓𝑉(𝑡) = 𝛽𝑜
𝑉 + 𝛽1

𝑉 ⋅ 𝑡 is a linear trend that represents the mean growth of Volume. Parameters 𝛽𝑜
𝑉 

and 𝛽1
𝑉 are determined by a linear regression, as in the work by Kalkbrener and Willing (2004). In equation 

(2), 𝜅𝑉 > 0 is the speed of adjustment, 𝑑𝑊𝑡 represents a variation to standard Brownian motion, and 𝜎𝑉 >

0 is the short-term volatility. The explicit solution to the deposit volume (3) can be obtained using Itô’s 

Lemma. 

 

𝑉(𝑡) = 𝑓𝑉(𝑡) + (𝑉0 − 𝑓𝑉(0)) ⋅ 𝑒−𝜅𝑡 + 𝜎𝑉 ∫ 𝑒𝜅(𝑠−𝑡)𝑑𝑤(𝑠)

𝑡

0

 (3) 

 

with the expected value and variance that can be obtained in accordance with Appendix A. 

 

𝐸[𝑉(𝑡)] = 𝑓𝑉(𝑡) + (𝑉0 − 𝑓𝑉(0)) ⋅ 𝑒−𝜅𝑡 

 
 

𝑉𝑎𝑟[𝑉(𝑡)] =
𝜎𝑉

2𝜅𝑉

(1 − 𝑒−2𝜅𝑡) (4) 

 

That is, in the long run, the expected value and variance are deterministic, i.e., they do not depend on 

the initial conditions of Volume 𝑉0. 

 

lim
𝑡→∞

𝐸[𝑉𝑡] = 𝑓𝑉(𝑡)  

𝑉𝑎𝑟[𝑉𝑡] =
𝜎𝑉

2

2𝜅𝑉

 (5) 

 

3.2. Log-Volume 

A second kind of model is created from the natural logarithm of the deposit volume, 𝑣(𝑡) = log (𝑉(𝑡)). We 

assume, for that purpose, that it can be written as (4), where  

𝑣(𝑡) = 𝑓𝑣(𝑡) + 𝑌𝑡  (6) 

𝑑𝑌𝑡 = −𝜅𝑣𝑌𝑡 ⋅ 𝑑𝑡 + 𝜎𝑣 ⋅ 𝑑𝑊𝑡  (7) 

 

where 𝜅𝑣 > 0 , 𝑌(0) = 𝑣(0) − 𝑓𝑣(0) = 𝑌0, and 𝑓𝑣(𝑡) = 𝛽𝑜
𝑣 + 𝛽1

𝑣 ⋅ 𝑡 is a linear trend that represents the 

mean growth of the Log-Volume. The following section describes in depth the deterministic function we 

implement in order to capture the seasonality and structural changes in Volume and Log-Volume. 

Hence, the volume has a lognormal distribution with mean 

𝐸[𝑉𝑡] = exp (𝐸[𝑣(𝑡)] +
1

2
𝑉𝑎𝑟[𝑣(𝑡)])  
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𝐸[𝑉𝑡] = exp (𝑓(𝑡) + 𝑌0𝑒−𝜅𝑡 +
𝜎𝑣

2

4𝜅
(1 − 𝑒−2𝜅𝑡)) (8) 

  

and variance 

𝑉𝑎𝑟[𝑉𝑡] = exp (2𝐸[𝑣(𝑡)] + 𝑉𝑎𝑟[𝑣(𝑡)])[exp (𝑉𝑎𝑟(𝑣(𝑡)) − 1] 
 

𝑉𝑎𝑟[𝑉𝑡] = exp 2 (𝑓(𝑡) + 𝑌0𝑒−𝜅𝑣𝑡 +
𝜎𝑣

2

4𝜅
(1 − 𝑒−2𝜅𝑣𝑡)) ⋅ [𝑒𝑥𝑝 (

𝜎𝑣
2

2𝜅
(1 − 𝑒−2𝜅𝑣𝑡)) − 1]. 

(9) 

 
 

In order to estimate the parameters for the Stochastic Differential Equation (SDE) for 𝑋𝑡 y 𝑌𝑡 using 

discrete observations, we need to express them fully in a discrete form, according to Agudelo et al (2018):  

 

𝑋𝑗 = (1 − 𝜅) ⋅ 𝑋𝑗−1 + 𝜖𝑗 (10) 

 

For 𝑗 from 2 to the number of observations. Where residuals 𝜖𝑗are i.i.d. normally distributed.  

3.3. Deterministic function f(t) 

To implement models (1) and (6), we specify a deterministic function 𝑓(𝑡), which captures both the 

seasonal pattern and the structural changes in savings accounts’ behavior after 2014 (see Appendix B) in 

Colombia. Such function represents all the relevant and predictable dynamics of deposit volume, and its 

selection depends on the specific characteristics of the data we have in order to meet all the assumptions of 

the linear regression model. We modified the deterministic function used by Kalkbrener and Willing (2004), 

adding dummy variables for each month Di, from January (D1) to November (D11), and a dummy variable 

DS for the structural change in tS, which modifies long-term growth since January 2015. The deterministic 

functions of Volume and Log-Volume have the same specifications, but their coefficients vary. The 

function 𝑓(𝑡) in (11) is a generalization for 𝑓𝑉(𝑡) and 𝑓𝑣(𝑡). 

𝑓(𝑡) = 𝛽0 + 𝛽1 ⋅ (1 − 𝐷𝑠) ⋅ 𝑡 + 𝛽2 ⋅ 𝐷𝑠 ⋅ 𝑡 + ∑ 𝐷𝑖 ⋅ 𝑀𝑖

11

𝑖=1

  

𝐷𝑠 = {
1;  𝑡 > 𝑡𝑠

0; 𝑡 ≤ 𝑡𝑠
 (11) 

 

Such specification for the deterministic function is applied to detrend the time series in order to compute 

different parameters of the Ornstein–Uhlenbeck process for Volume and Log-Volume. Parameters 𝛽0, 𝛽1, 

𝛽2, and 𝑀𝑖 are estimated from a historical time series of deposit volumes. Subsequently, we use a segmented 

linear regression, as suggested by Gujarati (2009), which is a type of linear regression where the slope of 

the model varies from 𝛽1 to 𝛽2 since the date of the structural change (see Figure 1). 
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Figure 1. Segmented linear regression. 

4. Data description 

The database consists of 228 monthly observations of the aggregate deposit volumes of the current accounts 

of the banks report to the regulator in Colombia.3 From 2001 to 2014, the financial information was 

prepared under the local accounting regulations; from 2015 onwards, the financial statements have been 

prepared following the Accounting and Financial Reporting Standards issued by the International 

Accounting Standards Board (IASB). 

 

 
Figure 2. Observed Deposit volume 

 

Figure 2 shows the monthly evolution of the aggregate volumes of deposits in current accounts for the 

analysis period. Seasonal components are observed, and the trend is accelerating until December 2014 and 

from January 2015 presents a period of growth deceleration until the end of 2016, where the accelerated 

series is again observed. Within the analyzed sample, 60% of the institutions correspond to international 

banks which concentrate more than 80% of the banking assets. 

 

                                                 
3 We used information available from the Colombian bank regulator in Información financiera con fines de supervisión in Estados 

financieros (COLGAAP) and Información financiera con fines de supervisión (IFRS). The variable Volúmenes de saldo de cuenta 

corriente was taken from Superintendencia financiera de Colombia at https://www.superfinanciera.gov.co/inicio/informes-y-
cifras/cifras/establecimientos-de-credito/informacion-por-sector/bancos-60775 
 

https://www.superfinanciera.gov.co/inicio/informes-y-cifras/cifras/establecimientos-de-credito/informacion-por-sector/bancos-60775
https://www.superfinanciera.gov.co/inicio/informes-y-cifras/cifras/establecimientos-de-credito/informacion-por-sector/bancos-60775
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Table 1 presents the descriptive statistics of Volume and Logarithm of Volume. Panel A lists the results 

of the whole dataset; Panel B, of the data before the date of the structural change; and Panel C, of the data 

after such change. the descriptive statistics show that after the structural change the average of the volumes 

of current account deposits increases.  

Table 1. Descriptive statistics of monthly deposit volumes in Colombia. 

Series 
Number of 

observations 
Percentile 5 Percentile 95 Mean Median Standard Deviation Skewness Kurtosis 

Panel A. All series (from Jan. 2001 to Dec. 2019) 

V(t) 

 

228 8,239,739,058 53,453,740,209 

  

29,476,338,165  

 

 26,518,547,376  

  

15,887,313,299                  0.20  1.61 

log (Vt) 228 22.83 24.70  23.93  24.00110547 0.628872993 -0.37 1.83 

         

Panel B. Before structural change (until Dec. 2014 for Volume and until Aug. 2014 for Log-Volume) 

V(t) 168 7,685,797,833 44,481,060,126 22,175,297,81 19,464,008,272 11,548,434,352 1 2.3 

log (Vt) 168 22.76 24.52 23.68 23.69 0.54 -0.09 1.9 

         

Panel C. After structural change (since Dec. 2014 for Volume and since Aug. 2014 for Log-Volume) 

V(t) 60      45,264,434,615    56,548,364,887    49,919,250,679    48,744,711,261           4,104,805,655                   1                   3.9  

log (Vt) 60            24.54        24.76    24.63                    24.61                 0.08              0.89              3.4  

 

5. Results 

Table 2 summarizes the model’s estimation of the deterministic functions. Note that all the parameters we 

use are statically significant in a 99% confidence interval. Additionally, in accordance with the adjusted R2, 

the deterministic function of Volume explains 97.77% of the variations in the observed data and 98.96% in 

the Log-Volume version. 

For the estimation of seasonal effects, the month 12 (December) is taken as the reference level. May, 

September, and October are the months in which the volumes of current accounts are lower, while 

December, January, and February are the months in which the volumes of deposits are higher.  

Table 2. Estimated F(t) for Volume and Log-Volume. 

Coefficients 
F(t) for Volume   F(t) for Log-Volume 

Value StdError tvalue Pr(>|t|)   Value StdError tvalue Pr(>|t|) 

𝛽0 5.99E+09 6.77E+08 8.858 0.000%  22.8700 0.0180 1272.468 <0.0001 

𝛽1 2.29E+08 3.95E+06 58.112 0.000%  0.0110 0.0001 104.998 <0.0002 

𝛽2 2.37E+08 2.50E+06 94.595 0.000%  0.0094 0.0001 141.431 <0.0003 

D1 -3.02E+09 8.07E+08 -3.742 0.410%  -0.1009 0.0214 -4.709 0.0019% 

D2 -2.88E+09 8.07E+08 -3.567 0.392%  -0.1056 0.0214 -4.931 0.0005% 

D3 -3.08E+09 8.06E+08 -3.824 0.294%  -0.1140 0.0214 -5.32 0.0002% 

D4 -3.49E+09 8.06E+08 -4.325 0.007%  -0.1262 0.0214 -5.89 0.0000% 

D5 -4.29E+09 8.06E+08 -5.327 0.000%  -0.1564 0.0214 -7.303 0.0000% 

D6 -3.32E+09 8.06E+08 -4.114 0.210%  -0.1180 0.0214 -5.509 0.0002% 

D7 -3.87E+09 8.06E+08 -4.807 0.001%  -0.1475 0.0214 -6.889 0.0000% 

D8 -3.62E+09 8.06E+08 -4.487 0.029%  -0.1428 0.0214 -6.671 0.0000% 

D9 -4.14E+09 8.06E+08 -5.133 0.001%  -0.1595 0.0214 -7.449 0.0000% 

D10 -3.74E+09 8.06E+08 -4.637 0.009%  -0.1525 0.0214 -7.125 0.0000% 

D11 -2.54E+09 8.06E+08 -3.149 0.097%   -0.1126 0.0214 -5.259 0.0000% 

Adjusted R2 0.9777 
 

0.9896 
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The estimated parameters of the Ornstein Uhlenbeck process are given in Table 3. The mean reversion 

parameter κ for V(t) is 0.08 and for logV(t) is 0.2, this implies that for V(t) a deviation from the long-term 

mean is corrected by 8% for the following period and for logV(t) the correction will be 20% (which implies 

that the reversion speed to the mean of logV(t) is greater than speed reversion of V(t)). The coefficient of 

determination of the mean reversion model for V(t) is 0.864 and for logV(t) is 0.6143. These determination 

coefficients explain the variability of the residues remaining from the estimation of the parameters of the 

deterministic function, which implies an additional explanation of the model, on the variability V(t) and 

logV(t). 

After the structural change in 2014, the growth rate of the deposit volume and Log-Volume decreased 

in Volume. Before the structural change, the time slope was 0.0109 monthly and, after it, 0.0094. The 

Ornstein–Uhlenbeck process estimation is presented in Table 3. 

Table 3. Ornstein–Uhlenbeck process estimation for X(t) and Y(t). 

Parameter 
X(t) for Volume   Y(t) for Log-Volume 

Estimate StdError tvalue Pr(>|t|)   Estimate StdError tvalue Pr(>|t|) 

1 − 𝜅 0.92 0.02428 37.9 <2e-16  0.80 0.04217 18.97 <2e-16 

𝜅 0.08     0.2    

𝜎 8.82e+08     0.03987    

Adjusted R2 0.864     0.6143    

AIC 9998.55     -815.62    

          

 

After we found the parameters, we ran a stochastic simulation of the process we established. Figure 3 

presents the simulation plots of a thousand trajectories, the 95% confidence interval, the 99% confidence 

interval, and the date of the structural change. The series V(t) and logV(t) are within the confidence intervals 

and the simulated probability distributions are close to the normal distribution. 

6. Conclusions 

In this paper, we studied the convenience of using an Ornstein–Uhlenbeck process to describe the dynamics 

of Non-Maturing Assets in Colombian savings accounts in terms of deposit volume and the logarithm of 

deposit volume. The proposed model has deterministic and stochastic components. Additionally, it was 

necessary to detrend the series to capture the long-term growth, a structural change in 2014, and seasonality, 

which describe the behavior of this market and provide some reference points that regulators and banks 

must consider in order to monitor and control liquidity risk. 

As deposit volume is modeled by a mean-reverting process, it always returns to some equilibrium level: 

the stronger the mean reversion, the faster deposits will go from an extreme value to their equilibrium (the 

expected mean). Long-term variance converges to a constant and does not increase indefinitely; thus, 

deposit volume maintains its movements within some range near its long-term mean. Therefore, the 

dynamics of deposit volume are considerably different from those of the stock market, where the expected 

variance increases over time to infinity. In accordance with this finding, risk managers should select an 

appropriate model to describe the expected mean of a number of future periods under analysis. This is 

because the levels of risk exposure depend not only on the variance but on the expected value as well. 

We found that the assumptions of an Ornstein–Uhlenbeck process are satisfied in the Log-Volume 

model to a greater extent than in its Volume counterpart; the residuals after the process of volume estimation 

are not independent. Due to this lognormal characteristic of the volume of deposits into savings accounts, 

CVaR should be used instead of VaR to measure liquidity risk. 

Further research could investigate the determinants of the structural changes since 2014 in savings 

account deposits by Colombian market participants; one of their possible causes is the emergence of 

alternative investments products. Moreover, a multivariate model could be formulated to capture the 

relationships among interest rates, deposit volume, GDP, inflation, and other factors to implement more 
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accurate risk measurements coherent with short-term economic behavior. In addition, since our analysis 

employed aggregate-level data, individual banks should be considered to understand the specific customer 

response to both systematic and idiosyncratic factors. 

 

 

 
(a) Volume (d) Log-Volume 

  
(b) Volume since 2011 (e) Log-Volume since 2011 

 

 
 

 

(c) PDF Volume from Volume model, last period  (f) PDF Volume from Log-Volume model, last period of time 

Figure 3. Deposit volume simulations.  
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The behavior of the analyzed series after the structural change indicated by the descriptive statistics 

implies a decrease in the risk inherent to the variations of the volumes in terms of liquidity (mainly those 

that imply retirement flows). the variability of the volumes of deposits in current accounts is mainly 

explained by their trend, seasonality, and mean reversion. 
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Appendix A 

First, we have the closed form (3). Here, we show the derivative of expected value and the variance of 

deposit volume, taken the conditional expected value for 𝑉(𝑡) in t=0 

𝐸[𝑉(𝑡)] = 𝐸 [𝑓(𝑡) + (𝑉0 − 𝑓(0)) ⋅ 𝑒−𝜅𝑡 + 𝜎 ∫ 𝑒𝜅(𝑠−𝑡)𝑑𝑤(𝑠)

𝑡

0

] 
 

⟹ 𝐸[𝑉(𝑡)] = 𝐸[𝑓(𝑡)] + 𝐸[(𝑉0 − 𝑓(0)) ⋅ 𝑒−𝜅𝑡] + 𝜎𝑉𝐸 [∫ 𝑒𝜅(𝑠−𝑡)𝑑𝑤(𝑠)

𝑡

0

] 
 

⟹ 𝐸[𝑉(𝑡)] = 𝐸[𝑓(𝑡)] + 𝐸[(𝑉0 − 𝑓(0)) ⋅ 𝑒−𝜅𝑡] 
 

⟹ 𝐸[𝑉(𝑡)] = 𝑓(𝑡) + (𝑉0 − 𝑓(0)) 
 

 

For the conditional variance: 

𝑉𝑎𝑟[𝑉(𝑡)] = 𝐸[𝑉(𝑡) − 𝐸[𝑉(𝑡)]]
2
  

⟹ 𝑉𝑎𝑟[𝑉(𝑡)] = 𝐸 [𝜎 ∫ 𝑒𝜅(𝑠−𝑡)𝑑𝑤(𝑠)

𝑡

0

]

2

  

⟹ 𝑉𝑎𝑟[𝑉(𝑡)] = 𝜎2 ∫ 𝑒2𝜅(𝑠−𝑡)𝑑𝑤(𝑠)

𝑡

0

  

⟹ 𝑉𝑎𝑟[𝑉(𝑡)] =
𝜎

2𝜅
(𝑒2𝜅(𝑡−𝑡) − 𝑒2𝜅(0−𝑡))  

⟹ 𝑉𝑎𝑟[𝑉(𝑡)] =
𝜎2

2𝜅
(1 − 𝑒−2𝜅𝑡)  
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Appendix B 

The recursive CUSUM test considers a cumulative sum of standardized residuals �̃�𝑖: 

 

𝑊𝑛(𝑡) =
1

�̃�√𝜂
∑ �̃�𝑖

𝑘+𝑡𝜂

𝑖=𝑘+1

  

 

Under the null hypothesis, the limiting process of the empirical fluctuation process 𝑊𝑛(𝑡) is Wiener 

Process. Under the alternative hypothesis, there is only a single structural change in all the series. Figure 4 

shows the recursive CUSUM test the Volume and Log-Volume series. 

 

  
(a) Test for Volume 

 

(b) Test for Log-Volume 

 

Figure 4. Recursive CUSUM test. 

Table 4 summarizes the CUSUM test. We found a structural change because the null hypothesis was 

rejected since December 2014 for Volume and since August 2014 for Log-Volume. 

Table 4. CUSUM test of Log-Volume. 

Deterministic 

function 

Date of structural 

change 
F-statistic Pvalue Ho 

𝑓𝑉(𝑡) December 2014 2.403 1.85e-10 Rejected 

𝑓𝑣(𝑡) August 2014 3.170 2.2e-16 Rejected 

 


